20 research outputs found

    Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning

    Full text link
    The quintessential model-based reinforcement-learning agent iteratively refines its estimates or prior beliefs about the true underlying model of the environment. Recent empirical successes in model-based reinforcement learning with function approximation, however, eschew the true model in favor of a surrogate that, while ignoring various facets of the environment, still facilitates effective planning over behaviors. Recently formalized as the value equivalence principle, this algorithmic technique is perhaps unavoidable as real-world reinforcement learning demands consideration of a simple, computationally-bounded agent interacting with an overwhelmingly complex environment, whose underlying dynamics likely exceed the agent's capacity for representation. In this work, we consider the scenario where agent limitations may entirely preclude identifying an exactly value-equivalent model, immediately giving rise to a trade-off between identifying a model that is simple enough to learn while only incurring bounded sub-optimality. To address this problem, we introduce an algorithm that, using rate-distortion theory, iteratively computes an approximately-value-equivalent, lossy compression of the environment which an agent may feasibly target in lieu of the true model. We prove an information-theoretic, Bayesian regret bound for our algorithm that holds for any finite-horizon, episodic sequential decision-making problem. Crucially, our regret bound can be expressed in one of two possible forms, providing a performance guarantee for finding either the simplest model that achieves a desired sub-optimality gap or, alternatively, the best model given a limit on agent capacity.Comment: Accepted to Neural Information Processing Systems (NeurIPS) 202

    Hindsight-DICE: Stable Credit Assignment for Deep Reinforcement Learning

    Full text link
    Oftentimes, environments for sequential decision-making problems can be quite sparse in the provision of evaluative feedback to guide reinforcement-learning agents. In the extreme case, long trajectories of behavior are merely punctuated with a single terminal feedback signal, engendering a significant temporal delay between the observation of non-trivial reward and the individual steps of behavior culpable for eliciting such feedback. Coping with such a credit assignment challenge is one of the hallmark characteristics of reinforcement learning and, in this work, we capitalize on existing importance-sampling ratio estimation techniques for off-policy evaluation to drastically improve the handling of credit assignment with policy-gradient methods. While the use of so-called hindsight policies offers a principled mechanism for reweighting on-policy data by saliency to the observed trajectory return, naively applying importance sampling results in unstable or excessively lagged learning. In contrast, our hindsight distribution correction facilitates stable, efficient learning across a broad range of environments where credit assignment plagues baseline methods

    Inclusive Artificial Intelligence

    Full text link
    Prevailing methods for assessing and comparing generative AIs incentivize responses that serve a hypothetical representative individual. Evaluating models in these terms presumes homogeneous preferences across the population and engenders selection of agglomerative AIs, which fail to represent the diverse range of interests across individuals. We propose an alternative evaluation method that instead prioritizes inclusive AIs, which provably retain the requisite knowledge not only for subsequent response customization to particular segments of the population but also for utility-maximizing decisions

    Shattering the Agent-Environment Interface for Fine-Tuning Inclusive Language Models

    Full text link
    A centerpiece of the ever-popular reinforcement learning from human feedback (RLHF) approach to fine-tuning autoregressive language models is the explicit training of a reward model to emulate human feedback, distinct from the language model itself. This reward model is then coupled with policy-gradient methods to dramatically improve the alignment between language model outputs and desired responses. In this work, we adopt a novel perspective wherein a pre-trained language model is itself simultaneously a policy, reward function, and transition function. An immediate consequence of this is that reward learning and language model fine-tuning can be performed jointly and directly, without requiring any further downstream policy optimization. While this perspective does indeed break the traditional agent-environment interface, we nevertheless maintain that there can be enormous statistical benefits afforded by bringing to bear traditional algorithmic concepts from reinforcement learning. Our experiments demonstrate one concrete instance of this through efficient exploration based on the representation and resolution of epistemic uncertainty. In order to illustrate these ideas in a transparent manner, we restrict attention to a simple didactic data generating process and leave for future work extension to systems of practical scale

    A Tale of Two DRAGGNs: A Hybrid Approach for Interpreting Action-Oriented and Goal-Oriented Instructions

    Full text link
    Robots operating alongside humans in diverse, stochastic environments must be able to accurately interpret natural language commands. These instructions often fall into one of two categories: those that specify a goal condition or target state, and those that specify explicit actions, or how to perform a given task. Recent approaches have used reward functions as a semantic representation of goal-based commands, which allows for the use of a state-of-the-art planner to find a policy for the given task. However, these reward functions cannot be directly used to represent action-oriented commands. We introduce a new hybrid approach, the Deep Recurrent Action-Goal Grounding Network (DRAGGN), for task grounding and execution that handles natural language from either category as input, and generalizes to unseen environments. Our robot-simulation results demonstrate that a system successfully interpreting both goal-oriented and action-oriented task specifications brings us closer to robust natural language understanding for human-robot interaction.Comment: Accepted at the 1st Workshop on Language Grounding for Robotics at ACL 201
    corecore